segunda-feira, 14 de outubro de 2019


FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



corrente de Planck current é a unidade de corrente elétrica, notada por Ip, no sistema de unidades naturais conhecido como unidades de Planck.
 ≈3.479 × 1025 A
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde:
 é a carga de Planck
 é o tempo de Planck
 = é a permissividade no vácuo
 é a constante de Dirac
c é a velocidade da luz no vácuo.
A corrente de Planck é aquela corrente a qual, em um condutor, transporta uma carga de Planck em um tempo de Planck.
Alternativamente, a corrente de Planck é aquela corrente a qual, se mantida em dois condutores retos paralelos de comprimento infinito e seção transversal desprezível, e colocados afastados um comprimento de Planck no vácuo, produzirão entre si uma força igual a força de Planck por comprimento de Planck.



constante de Planck, representada por , é uma das constantes fundamentais da Física.[1] Tem um papel fundamental na mecânica quântica, aparecendo sempre no estudo de fenômenos em que a explicação por meio da mecânica quântica é relevante. Tem o seu nome em homenagem a Max Planck, um dos fundadores da teoria quântica. A 26ª Conferência Geral de Pesos e Medidas fixou o valor exato da constante de Planck:[2]
Um dos usos dessa constante é a determinação da energia de um fóton, dada pela seguinte equação:[3]:
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


Nesta equação:
 é a energia do fóton, também conhecida como quantum de energia;
 é a constante de Planck;
 é a frequência da radiação.

    Constante reduzida de Planck[editar | editar código-fonte]

    Em algumas equações de física, tal como a equação de Schrödinger, aparece o símbolo , que é apenas uma abreviação conveniente para , chamada de constante reduzida de Planck, ou para alguns, constante de Dirac, diferindo da constante de Planck pelo fator . Consequentemente:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Equações formuladas com base na teoria quântica de Planck explicaram precisamente a radiação de um corpo negro ao longo do espectro eletromagnético. O feito de Planck foi relacionar matematicamente o conteúdo de energia de um quantum à frequência da radiação. Um quantum de energia E, é igual à frequência f da radiação multiplicada pela constante de Planck h. A constante h, um valor extremamente pequeno, é tida atualmente como uma das constantes fundamentais do universo.[4] Não é só a constante de Planck que é pequena, o quantum também é. As unidades de radiação são tão pequenas que são percebidas como contínuas, por exemplo, a luz. Assim como a matéria comum nos parece contínua ainda que saibamos que ela é formada por unidades discretas chamadas "átomos".[4]

    História[editar | editar código-fonte]



    A constante de Planck surgiu da hipótese de Max Karl Ernest Ludwing Planck de solucionar um efeito conhecido na época como "catástrofe do ultravioleta". Era observada uma discrepância entre os valores teorizados utilizando a Física Clássica com relação aos valores experimentais da emissão do radiador de cavidade (que é um forno em equilíbrio térmico que, através de um orifício em uma de suas paredes, deixa escapar um feixe de radiação). A predição da Física Clássica implica um crescimento da intensidade da radiação com uma potência da frequência, de forma que a energia total emitida pela cavidade seria infinita! E esta é a chamada "catástrofe".[5] No interior do radiador de cavidade o equilíbrio térmico ocorre através de trocas de energia entre a radicação e os átomos das paredes, que absorvem e reemitem a radiação. O modelo clássico para a absorção e emissão de radiação prevê que as cargas oscilam com a frequência de um sistema de cargas (oscilador de Hertz).[5]
    Em 14 de dezembro de 1900, Max Planck apresentou uma proposta que descreveria a expressão da emissão de corpo negro (radiador de cavidade) de acordo com a experimentação. Abandonando uma das premissas da Física Clássica, a de que a troca de energia entre a radiação e os "osciladores" se dá de maneira contínua, Planck postulou que a troca seria "quantizada"; com isso ele formulou a quantidade de energia de um fóton, acrescentando uma constante que ficou conhecida como "constante de Planck"[5]. Planck confessou, mais tarde, que só foi levado a formular essa hipótese por "um ato de desespero", dizendo: "era uma hipótese puramente formal, e não lhe dei muita atenção, adotando-a porque era preciso, a qualquer preço, encontrar uma explicação teórica".[5].
    Planck dedicou-se durante anos, com muito esforço, a encontrar uma explicação para o seu postulado através da Física Clássica, mas acabou, com certa resistência, convencendo-se que isso não seria possível.[5]. Sob muitos aspectos, a vida de Max Planck apresentava um notável contraste com as de "Newton" e "Einstein". Enquanto estes foram considerados gênios por quase todos, Planck foi um cientista consciente, cuidadoso e respeitado administrador acadêmico.[4]

    Bohr e a constante de Planck[editar | editar código-fonte]



    Em 1913, quando foi estabelecida a relação entre níveis de energia e comprimentos de onda dos espectros, Bohr também propôs um modelo para o átomo de hidrogênio, hoje conhecido como "modelo de Bohr". Ele era capaz de calcular os níveis de energia do átomo de hidrogênio, obtendo medidas que concordavam com os valores determinados a partir dos espectros.[6]
    Anterior ao modelo de Bohr, o modelo mais aceito era o de Rutherford, segundo o qual o elétron descreveria uma órbita circular em torno do núcleo, do mesmo modo que um planeta descreve uma órbita em torno do Sol, porém esse modelo apresenta um problema: de acordo com a teoria eletromagnética clássica, qualquer carga elétrica acelerada irradia ondas eletromagnéticas; sendo assim, o elétron iria perder energia continuamente, descrevendo uma órbita espiral até atingir o núcleo. À medida que ele vai irradiando e se aproximando do núcleo a sua velocidade angular iria diminuindo e ele iria emitir um "espectro" contínuo e não um "espectro de riscas" que observamos na realidade.[6]
    Para resolver esse problema, Bohr sugeriu uma hipótese revolucionária. Ele postulou que um elétron em um átomo pode circular em torno do núcleo descrevendo órbitas estacionárias sem emitir nenhuma radiação, contrariando as previsões da teoria eletromagnética clássica. De acordo com Bohr, existe uma energia definida associada a cada órbita estacionária, e o elétron só irradia energia ao fazer uma transição de uma dessas órbitas para outra. A energia é irradiada na forma de um fóton cuja energia e frequência obedecem à seguinte equação: [6]
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Relacionando o módulo do momento angular do elétron em níveis de energia altamente excitados, Bohr verificou que o módulo do momento angular do elétron é quantizado, ou seja, esse módulo para o elétron deve ser um múltiplo inteiro de . Sendo o módulo do momento angular é  para uma partícula de massa  se deslocando com velocidade angular  ao longo de uma circunferência de raio . Portanto, o argumento de Bohr leva ao resultado[6]
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    em que . Cada valor de n corresponde a um valor permitido para o raio da órbita, que daqui por diante será designado por , e a um valor correspondente da velocidade . O valor de  para cada órbita é chamado de número quântico principal para a referida órbita. Com essa notação, a equação anterior pode ser escrita na forma[6]
     (quantização do momento angular)
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Bohr chegou em uma expressão que representa os raios orbitais, descrita por:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Essa expressão mostra que o raio orbital  é proporcional a , o menor raio orbital corresponde a . Esse raio mínimo é chamado de raio de Bohr, que é dado por:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    Podendo então escrever  como:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    As órbitas permitidas possuem raios  e assim por diante. O raio de Bohr é dado por [6]



    Corrente de Foucault (ou ainda corrente parasita) é o nome dado à corrente elétrica induzida dentro de um material condutor, quando sujeito a um campo magnético variável devido à lei de indução de Faraday. A corrente de Foucault flui em uma volta fechada dentro de um condutor, em planos perpendiculares, que pode ser induzida por um condutor estacionário próximo por um campo magnético variante criado por um eletroímã ou transformador, por exemplo, ou por um movimento relativo a um ímã e um condutor próximo. A magnitude da corrente em uma dada volta é proporcional ao campo magnético, à área da volta, à variação do fluxo e inversamente proporcional à resistividade do material.
    Conforme a Lei de Lenz, a magnitude e sentido dessa corrente se opõe à variação do campo que a provoca, formando polos magnéticos que geram forças que efetivamente se opõem ao movimento do material condutor dentro do campo magnético. Este efeito é empregado na frenagem de trens controlados por eletroímãs, que são usados para impedir a rotação de ferramentas rapidamente quando desligadas. A corrente de Foucault fluindo através da resistência de um material também dissipa energia em forma de calor por efeito Joule, que causa perda de energia em indutores, transformadores, motores elétricosgeradores e outras máquinas em corrente (AC). Para evitar a dissipação de energia, os materiais sujeitos a campos magnéticos variáveis são frequentemente laminados ou construídos com placas muito pequenas isoladas umas das outras. A corrente de Foucault também é utilizada por fornos de aquecimento por indução e para instrumentos de detecção de rachaduras e falhas em metais.

      História[editar | editar código-fonte]

      A primeira pessoa a observar essa corrente foi François Arago (1786-1853), o 25° Primeiro Ministro da França, que também era matemáticofísico e astrônomo. Em 1824 ele observou o que foi chamado de magnetismo rotativo, e que a maioria dos corpos condutores podiam ser magnetizados; estas descobertas foram completadas e explicadas por Michael Faraday (1791-1867).
      Em 1834, Heinrich Lenz estabeleceu a lei de Lenz, que afirma que o sentido do fluxo da corrente induzida em um condutor será tal que o campo magnético irá se opor à variação do fluxo magnético que causou o fluxo da corrente. Esta corrente produz um campo secundário que cancela a parte externa do campo e causa parte do fluxo externo a se desviar do condutor.
      O físico francês Jean Bernard Léon Foucault (1819-1868) foi creditado à descoberta dessa corrente. Em setembro de 1855, foi percebido o aumento na força necessária para rotacionar o aro de um disco de cobre quando colocado entre dois polos de um ímã, ao mesmo tempo, o disco se aquecia pela corrente induzida no metal. O primeiro uso da corrente de Foucault para teste não destrutivo ocorreu em 1879 quando David Edward Hughes usou o princípio para conduzir testes de triagem metalúrgica.

      Explicação[editar | editar código-fonte]

      Correntes de Foucault (I, vermelho) induzidas em uma placa de metal (C) enquanto se move sob um ímã (N). O campo magnético (B, verde) é direcionado para baixo atravessando a placa. O campo que aumenta na borda principal do ímã (esquerda) induz uma corrente no sentido anti-horário, que pela lei de Lenz cria seu próprio campo magnético (flecha esquerda azul) direcionado para cima, contrário ao campo do ímã, produzindo uma força retrógrada. Semelhantemente, na borda do fundo do ímã (direita), uma corrente no sentido horário e um campo para baixo é criado (flecha direita azul) também produzindo uma força retrógrada.
      Ilustração de penetração de campo magnético
      Diagrama mostrando a diminuição exponencial exp(-z/δ) da intensidade da corrente de Foucault , conforme a profundidade z cresce .
      Laminações de núcleos magnéticos em transformadores melhoram muito a eficiência por minimizarem as correntes de Foucault.
      Um ímã induz correntes elétricas circulares em uma lâmina de metal passando por ele. Veja o diagrama à direita que mostra uma lâmina de metal (C) se movendo à direita sob de um ímã estacionário. O campo magnético B (flechas verdes) do polo norte N do ímã atravessam a lâmina para baixo. Já que o metal está se movendo, o fluxo magnético através da lâmina está variando. Na parte da folha sob a borda principal do imã (lado esquerdo) o campo magnético através da lâmina aumenta ao se aproximar do ímã, . Pela lei de indução de Faraday, isso cria um campo elétrico circular na lâmina em sentido anti-horário ao redor das linhas de campo magnético. Este campo induz um fluxo de corrente em sentido anti-horário I (flechas vermelhas), na lâmina. Esta é a corrente de Foucault. Na borda do fundo do ímã (lado direito) o campo magnético através da lâmina diminui, 
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


      induzindo uma segunda corrente de Foucault em sentido horário na lâmina.
      Outra maneira de entender a corrente é enxergando que os portadores de carga (elétrons) livres na lâmina de metal estão se movendo com a lâmina para a direita, então o campo magnético exerce uma força lateral neles devido à força de Lorentz. Já que a velocidade V das cargas são para a direita e o campo magnético B é direcionado para baixo, pela regra da mão direita, a força de Lorentz nas cargas positivas é em direção à traseira do diagrama (à esquerda em relação à direção do movimento V). Isso causa uma corrente I em direção à traseira sob o ímã, que circula ao redor através da lâmina fora do campo magnético, horário para a direita e anti-horário para a esquerda, em frente ao ímã novamente. Os carregadores de carga no metal, os elétrons, possuem na verdade uma carga negativa (q < 0) então sua direção de movimentação é contrário à direção da corrente convencional mostrada.
      Pela lei de Ampère da corrente, cada uma das correntes circulares criam um campo magnético contrário (azuis) que, devido à lei de Lenz, se opõe à variação no campo magnético que o causou, exercendo um força de arrasto na lâmina. Na borda principal da lâmina (lado esquerdo), pela regra da mão direita, a corrente no sentido anti-horário cria um campo magnético apontado para cima, contra ao campo magnético do ímã, causando uma força repulsiva entre a lâmina e a borda principal do ímã. Em contraste, na borda de fundo (lado direito), a corrente no sentido horário causa um campo magnético apontado para baixo, na mesma direção do campo magnético do ímã, criando uma força atrativa entre a lâmina e a borda de fundo do ímã. Ambas as forças se opõem ao movimento do ímã. A energia cinética que é consumida superada pela força de arrasto é dissipada em forma de calor pelas correntes fluindo através da resistência do metal, então o metal se aquece sob o ímã.
      Para o caso de um solenoide sobre um plano condutor, sua densidade corrente  em seu interior, ou seja, a corrente de Foucault pode ser dada por:
      x

      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.=

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D


      sendo  a profundidade de penetração, que pode ser vista no efeito pelicular, que relaciona a profundidade em que o campo magnético penetra no material em função da frequência com que varia. É importante sobressaltar que as correntes geradas, neste caso, circulam o plano em volta do eixo do solenoide com uma profundidade , assim como o fato em que a corrente de Foucault diminui a intensidade exponencialmente à medida que os campos penetram no condutor, de acordo com o termo [1]